classification#
cleanlab can be used for learning with noisy labels for any dataset and model.
For regular (multi-class) classification tasks,
the CleanLearning
class wraps an instance of an
sklearn classifier. The wrapped classifier must adhere to the sklearn estimator API,
meaning it must define four functions:
clf.fit(X, y, sample_weight=None)
clf.predict_proba(X)
clf.predict(X)
clf.score(X, y, sample_weight=None)
where X
contains data (i.e. features), y
contains labels (with elements in 0, 1, …, K-1,
where K is the number of classes). The first index of X
and of y
should correspond to the different examples in the dataset,
such that len(X) = len(y) = N
(sample-size). Here sample_weight
re-weights examples in
the loss function while training (supporting sample_weight
in your classifier is recommended but optional).
Furthermore, your estimator should be correctly clonable via
sklearn.base.clone:
cleanlab internally creates multiple instances of the
estimator, and if you e.g. manually wrap a PyTorch model, you must ensure that
every call to the estimator’s __init__()
creates an independent instance of
the model (for sklearn compatibility, the weights of neural network models should typically be initialized inside of clf.fit()
).
Note
There are two new notions of confidence in this package:
1. Confident examples — examples we are confident are labeled correctly. We prune everything else. Mathematically, this means keeping the examples with high probability of belong to their provided label class.
2. Confident errors — examples we are confident are labeled erroneously. We prune these. Mathematically, this means pruning the examples with high probability of belong to a different class.
Examples
>>> from cleanlab.classification import CleanLearning
>>> from sklearn.linear_model import LogisticRegression as LogReg
>>> cl = CleanLearning(clf=LogReg()) # Pass in any classifier.
>>> cl.fit(X_train, labels_maybe_with_errors)
>>> # Estimate the predictions as if you had trained without label issues.
>>> pred = cl.predict(X_test)
If the model is not sklearn-compatible by default, it might be the case that standard packages can adapt the model. For example, you can adapt PyTorch models using skorch and adapt Keras models using SciKeras.
If an open-source adapter doesn’t already exist, you can manually wrap the model to be sklearn-compatible. This is made easy by inheriting from sklearn.base.BaseEstimator:
from sklearn.base import BaseEstimator
class YourModel(BaseEstimator):
def __init__(self, ):
pass
def fit(self, X, y, sample_weight=None):
pass
def predict(self, X):
pass
def predict_proba(self, X):
pass
def score(self, X, y, sample_weight=None):
pass
Note
labels
refers to the given labels in the original dataset, which may have errorslabels must be integers in 0, 1, …, K-1, where K is the total number of classes
Note
Confident learning is the state-of-the-art (Northcutt et al., 2021) for
weak supervision, finding label issues in datasets, learning with noisy
labels, uncertainty estimation, and more. It works with any classifier,
including deep neural networks. See the clf
parameter.
Confident learning is a subfield of theory and algorithms of machine learning with noisy labels. Cleanlab achieves state-of-the-art performance of any open-sourced implementation of confident learning across a variety of tasks like multi-class classification, multi-label classification, and PU learning.
Given any classifier having the predict_proba
method, an input feature
matrix X
, and a discrete vector of noisy labels labels
, confident learning estimates the
classifications that would be obtained if the true labels had instead been provided
to the classifier during training. labels
denotes the noisy labels instead of
the used in confident learning paper.
Classes:
|
CleanLearning = Machine Learning with cleaned data (even when training on messy, error-ridden data). |
- class cleanlab.classification.CleanLearning(clf=None, *, seed=None, cv_n_folds=5, converge_latent_estimates=False, pulearning=None, find_label_issues_kwargs={}, label_quality_scores_kwargs={}, verbose=False, low_memory=False)[source]#
Bases:
BaseEstimator
CleanLearning = Machine Learning with cleaned data (even when training on messy, error-ridden data).
Automated and robust learning with noisy labels using any dataset and any model. This class trains a model
clf
with error-prone, noisy labels as if the model had been instead trained on a dataset with perfect labels. It achieves this by cleaning out the error and providing cleaned data while training. This class is currently intended for standard (multi-class) classification tasks.- Parameters:
clf (
estimator instance
, optional) –A classifier implementing the sklearn estimator API, defining the following functions:
clf.fit(X, y, sample_weight=None)
clf.predict_proba(X)
clf.predict(X)
clf.score(X, y, sample_weight=None)
See
cleanlab.models
, the tutorials, and examples/ repo for examples of sklearn wrappers, e.g. around PyTorch, Keras, or FastText.If the model is not sklearn-compatible by default, it might be the case that standard packages can adapt the model. For example, you can adapt PyTorch models using skorch and adapt Keras models using SciKeras.
Stores the classifier used in Confident Learning. Default classifier used is sklearn.linear_model.LogisticRegression. Default classifier assumes that indexing along the first dimension of the dataset corresponds to selecting different training examples.
seed (
int
, optional) – Set the default state of the random number generator used to split the cross-validated folds. By default, usesnp.random
current random state.cv_n_folds (
int
, default5
) – This class needs holdout predicted probabilities for every data example and if not provided, uses cross-validation to compute them.cv_n_folds
sets the number of cross-validation folds used to compute out-of-sample probabilities for each example inX
.converge_latent_estimates (
bool
, optional) – If true, forces numerical consistency of latent estimates. Each is estimated independently, but they are related mathematically with closed form equivalences. This will iteratively enforce consistency.pulearning (
{None, 0, 1}
, defaultNone
) – Only works for 2 class datasets. Set to the integer of the class that is perfectly labeled (you are certain that there are no errors in that class).find_label_issues_kwargs (
dict
, optional) – Keyword arguments to pass intofilter.find_label_issues
. Particularly useful options include:filter_by
,frac_noise
,min_examples_per_class
(which all impact ML accuracy),n_jobs
(set this to 1 to disable multi-processing if it’s causing issues).label_quality_scores_kwargs (
dict
, optional) – Keyword arguments to pass intorank.get_label_quality_scores
. Options include:method
,adjust_pred_probs
.verbose (
bool
, defaultFalse
) – Controls how much output is printed. Set toFalse
to suppress print statements.low_memory (
bool
, defaultFalse
) – Set asTrue
if you have a big dataset with limited memory. Usesexperimental.label_issues_batched.find_label_issues_batched
to find label issues.
Methods:
fit
(X[, labels, pred_probs, thresholds, ...])Train the model
clf
with error-prone, noisy labels as if the model had been instead trained on a dataset with the correct labels.predict
(*args, **kwargs)Predict class labels using your wrapped classifier
clf
.predict_proba
(*args, **kwargs)Predict class probabilities
P(true label=k)
using your wrapped classifierclf
.score
(X, y[, sample_weight])Evaluates your wrapped classifier
clf
's score on a test setX
with labelsy
.find_label_issues
([X, labels, pred_probs, ...])Identifies potential label issues in the dataset using confident learning.
Accessor.
Clears non-sklearn attributes of this estimator to save space (in-place).
__init_subclass__
(**kwargs)Set the
set_{method}_request
methods.Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_fit_request
(*[, clf_final_kwargs, ...])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.- fit(X, labels=None, *, pred_probs=None, thresholds=None, noise_matrix=None, inverse_noise_matrix=None, label_issues=None, sample_weight=None, clf_kwargs={}, clf_final_kwargs={}, validation_func=None, y=None)[source]#
Train the model
clf
with error-prone, noisy labels as if the model had been instead trained on a dataset with the correct labels.fit
achieves this by first trainingclf
via cross-validation on the noisy data, using the resulting predicted probabilities to identify label issues, pruning the data with label issues, and finally trainingclf
on the remaining clean data.- Parameters:
X (
np.ndarray
orDatasetLike
) –Data features (i.e. training inputs for ML), typically an array of shape
(N, ...)
, where N is the number of examples. SupportedDatasetLike
types beyondnp.ndarray
include:pd.DataFrame
,scipy.sparse.csr_matrix
,torch.utils.data.Dataset
,tensorflow.data.Dataset
, or any dataset objectX
that supports list-based indexing:X[index_list]
to select a subset of training examples. Your classifier that this instance was initialized with,clf
, must be able tofit()
andpredict()
data of this format.Note
If providing
X
as atensorflow.data.Dataset
, make sureshuffle()
has been called beforebatch()
(if shuffling) and no other order-destroying operation (eg.repeat()
) has been applied.labels (
array_like
) – An array of shape(N,)
of noisy classification labels, where some labels may be erroneous. Elements must be integers in the set 0, 1, …, K-1, where K is the number of classes. Supportedarray_like
types include:np.ndarray
,pd.Series
, orlist
.pred_probs (
np.ndarray
, optional) –An array of shape
(N, K)
of model-predicted probabilities,P(label=k|x)
. Each row of this matrix corresponds to an examplex
and contains the model-predicted probabilities thatx
belongs to each possible class, for each of the K classes. The columns must be ordered such that these probabilities correspond to class 0, 1, …, K-1.pred_probs
should be out-of-sample, eg. computed via cross-validation. If provided,pred_probs
will be used to find label issues rather than theclf
classifier.Note
If you are not sure, leave
pred_probs=None
(the default) and it will be computed for you using cross-validation with the provided model.thresholds (
array_like
, optional) –An array of shape
(K, 1)
or(K,)
of per-class threshold probabilities, used to determine the cutoff probability necessary to consider an example as a given class label (see Northcutt et al., 2021, Section 3.1, Equation 2).This is for advanced users only. If not specified, these are computed for you automatically. If an example has a predicted probability greater than this threshold, it is counted as having true_label = k. This is not used for pruning/filtering, only for estimating the noise rates using confident counts.
noise_matrix (
np.ndarray
, optional) – An array of shape(K, K)
representing the conditional probability matrixP(label=k_s | true label=k_y)
, the fraction of examples in every class, labeled as every other class. Assumes columns ofnoise_matrix
sum to 1.inverse_noise_matrix (
np.ndarray
, optional) – An array of shape(K, K)
representing the conditional probability matrixP(true label=k_y | label=k_s)
, the estimated fraction observed examples in each classk_s
that are mislabeled examples from every other classk_y
, Assumes columns ofinverse_noise_matrix
sum to 1.label_issues (
pd.DataFrame
ornp.ndarray
, optional) –Specifies the label issues for each example in dataset. If
pd.DataFrame
, must be formatted as the one returned by:CleanLearning.find_label_issues
orget_label_issues
. Ifnp.ndarray
, must contain either booleanlabel_issues_mask
as output by: defaultfilter.find_label_issues
, or integer indices as output byfilter.find_label_issues
with itsreturn_indices_ranked_by
argument specified. Providing this argument significantly reduces the time this method takes to run by skipping the slow cross-validation step necessary to find label issues. Examples identified to have label issues will be pruned from the data before training the finalclf
model.Caution: If you provide
label_issues
without having previously calledfind_label_issues
e.g. as anp.ndarray
, then some functionality like training with sample weights may be disabled.sample_weight (
array_like
, optional) – Array of weights with shape(N,)
that are assigned to individual samples, assuming total number of examples in dataset isN
. If not provided, samples may still be weighted by the estimated noise in the class they are labeled as.clf_kwargs (
dict
, optional) – Optional keyword arguments to pass intoclf
’sfit()
method.clf_final_kwargs (
dict
, optional) – Optional extra keyword arguments to pass into the finalclf
fit()
on the cleaned data but not theclf
fit()
in each fold of cross-validation on the noisy data. The finalfit()
will also receiveclf_kwargs
, but these may be overwritten by values inclf_final_kwargs
. This can be useful for training differently in the finalfit()
than during cross-validation.validation_func (
callable
, optional) –Optional callable function that takes two arguments,
X_val
,y_val
, and returns a dict of keyword arguments passed into toclf.fit()
which may be functions of the validation data in each cross-validation fold. Specifies how to map the validation data split in each cross-validation fold into the appropriate format to pass intoclf
’sfit()
method, assumingclf.fit()
can utilize validation data if it is appropriately passed in (eg. for early-stopping). Eg. if your model’sfit()
method is called usingclf.fit(X, y, X_validation, y_validation)
, then you could setvalidation_func = f
wheredef f(X_val, y_val): return {"X_validation": X_val, "y_validation": y_val}
Note that
validation_func
will be ignored in the final call toclf.fit()
on the cleaned subset of the data. This argument is only for allowingclf
to access the validation data in each cross-validation fold (eg. for early-stopping or hyperparameter-selection purposes). If you want to pass in validation data even in the final training call toclf.fit()
on the cleaned data subset, you should explicitly pass in that data yourself (eg. viaclf_final_kwargs
orclf_kwargs
).y (
array_like
, optional) – Alternative argument that can be specified instead oflabels
. Specifyingy
has the same effect as specifyinglabels
, and is offered as an alternative for compatibility with sklearn.
- Return type:
Self
- Returns:
self (
CleanLearning
) – Fitted estimator that has all the same methods as any sklearn estimator.After calling
self.fit()
, this estimator also stores extra attributes such as:self.label_issues_df: a
pd.DataFrame
accessible via
~cleanlab.classification.CleanLearning.get_label_issues of similar format as the one returned by: ~cleanlab.classification.CleanLearning.find_label_issues. See documentation of
CleanLearning.find_label_issues
for column descriptions.After calling
self.fit()
, self.label_issues_df may also contain an extra column:sample_weight: Numeric values that were used to weight examples during the final training of clf in
CleanLearning.fit()
. sample_weight column will only be present if automatic sample weights were actually used. These automatic weights are assigned to each example based on the class it belongs to, i.e. there are only num_classes unique sample_weight values. The sample weight for an example belonging to class k is computed as1 / p(given_label = k | true_label = k)
. This sample_weight normalizes the loss to effectively trick clf into learning with the distribution of the true labels by accounting for the noisy data pruned out prior to training on cleaned data. In other words, examples with label issues were removed, so this weights the data proportionally so that the classifier trains as if it had all the true labels, not just the subset of cleaned data left after pruning out the label issues.
Note
If
CleanLearning.fit()
does not work for your data/model, you can run the same procedure yourself: * Utilize cross-validation to get out-of-sample pred_probs for each example. * Callfilter.find_label_issues
with pred_probs. * Filter the examples with detected issues and train your model on the remaining data.
- predict(*args, **kwargs)[source]#
Predict class labels using your wrapped classifier clf. Works just like
clf.predict()
.- Parameters:
X (
np.ndarray
orDatasetLike
) – Test data in the same format expected by your wrapped classifier.- Return type:
ndarray
- Returns:
class_predictions (
np.ndarray
) – Vector of class predictions for the test examples.
- predict_proba(*args, **kwargs)[source]#
Predict class probabilities
P(true label=k)
using your wrapped classifier clf. Works just likeclf.predict_proba()
.- Parameters:
X (
np.ndarray
orDatasetLike
) – Test data in the same format expected by your wrapped classifier.- Return type:
ndarray
- Returns:
pred_probs (
np.ndarray
) –(N x K)
array of predicted class probabilities, one row for each test example.
- score(X, y, sample_weight=None)[source]#
Evaluates your wrapped classifier clf’s score on a test set X with labels y. Uses your model’s default scoring function, or simply accuracy if your model as no
"score"
attribute.- Parameters:
X (
np.ndarray
orDatasetLike
) – Test data in the same format expected by your wrapped classifier.y (
array_like
) – Test labels in the same format as labels previously used infit()
.sample_weight (
np.ndarray
, optional) – An array of shape(N,)
or(N, 1)
used to weight each test example when computing the score.
- Return type:
float
- Returns:
score (
float
) – Number quantifying the performance of this classifier on the test data.
- find_label_issues(X=None, labels=None, *, pred_probs=None, thresholds=None, noise_matrix=None, inverse_noise_matrix=None, save_space=False, clf_kwargs={}, validation_func=None)[source]#
Identifies potential label issues in the dataset using confident learning.
Runs cross-validation to get out-of-sample pred_probs from clf and then calls
filter.find_label_issues
to find label issues. These label issues are cached internally and returned in a pandas DataFrame. Kwargs forfilter.find_label_issues
must have already been specified in the initialization of this class, not here.Unlike
filter.find_label_issues
, which requires pred_probs, this method only requires a classifier and it can do the cross-validation for you. Both methods return the same boolean mask that identifies which examples have label issues. This is the preferred method to use if you plan to subsequently invoke: ~cleanlab.classification.CleanLearning.fit.Note: this method computes the label issues from scratch. To access previously-computed label issues from this ~cleanlab.classification.CleanLearning instance, use the ~cleanlab.classification.CleanLearning.get_label_issues method.
This is the method called to find label issues inside ~cleanlab.classification.CleanLearning.fit and they share mostly the same parameters.
- Parameters:
save_space (
bool
, optional) – If True, then returned label_issues_df will not be stored as attribute. This means some other methods like self.get_label_issues() will no longer work.
For info about the other parameters, see the docstring of ~cleanlab.classification.CleanLearning.fit.
- Return type:
DataFrame
- Returns:
label_issues_df (
pd.DataFrame
) – DataFrame with info about label issues for each example. Unless save_space argument is specified, same DataFrame is also stored as self.label_issues_df attribute accessible via ~cleanlab.classification.CleanLearning.get_label_issues. Each row represents an example from our dataset and the DataFrame may contain the following columns:is_label_issue: boolean mask for the entire dataset where
True
represents a label issue andFalse
represents an example that is accurately labeled with high confidence. This column is equivalent to label_issues_mask output fromfilter.find_label_issues
.label_quality: Numeric score that measures the quality of each label (how likely it is to be correct, with lower scores indicating potentially erroneous labels).
given_label: Integer indices corresponding to the class label originally given for this example (same as labels input). Included here for ease of comparison against clf predictions, only present if “predicted_label” column is present.
predicted_label: Integer indices corresponding to the class predicted by trained clf model. Only present if
pred_probs
were provided as input or computed during label-issue-finding.sample_weight: Numeric values used to weight examples during the final training of clf in ~cleanlab.classification.CleanLearning.fit. This column may not be present after self.find_label_issues() but may be added after call to ~cleanlab.classification.CleanLearning.fit. For more precise definition of sample weights, see documentation of ~cleanlab.classification.CleanLearning.fit
- get_label_issues()[source]#
Accessor. Returns label_issues_df attribute if previously already computed. This
pd.DataFrame
describes the label issues identified for each example (each row corresponds to an example). For column definitions, see the documentation of ~cleanlab.classification.CleanLearning.find_label_issues.- Return type:
Optional
[DataFrame
]- Returns:
label_issues_df (
pd.DataFrame
) – DataFrame with (precomputed) info about label issues for each example.
- save_space()[source]#
Clears non-sklearn attributes of this estimator to save space (in-place). This includes the DataFrame attribute that stored label issues which may be large for big datasets. You may want to call this method before deploying this model (i.e. if you just care about producing predictions). After calling this method, certain non-prediction-related attributes/functionality will no longer be available (e.g. you cannot call
self.fit()
anymore).
- classmethod __init_subclass__(**kwargs)#
Set the
set_{method}_request
methods.This uses PEP-487 [1] to set the
set_{method}_request
methods. It looks for the information available in the set default values which are set using__metadata_request__*
class attributes, or inferred from method signatures.The
__metadata_request__*
class attributes are used when a method does not explicitly accept a metadata through its arguments or if the developer would like to specify a request value for those metadata which are different from the defaultNone
.References
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
routing (
MetadataRequest
) – AMetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
deep (
bool
, defaultTrue
) – If True, will return the parameters for this estimator and contained subobjects that are estimators.- Returns:
params (
dict
) – Parameter names mapped to their values.
- set_fit_request(*, clf_final_kwargs: bool | None | str = '$UNCHANGED$', clf_kwargs: bool | None | str = '$UNCHANGED$', inverse_noise_matrix: bool | None | str = '$UNCHANGED$', label_issues: bool | None | str = '$UNCHANGED$', labels: bool | None | str = '$UNCHANGED$', noise_matrix: bool | None | str = '$UNCHANGED$', pred_probs: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$', thresholds: bool | None | str = '$UNCHANGED$', validation_func: bool | None | str = '$UNCHANGED$') CleanLearning #
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
clf_final_kwargs (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forclf_final_kwargs
parameter infit
.clf_kwargs (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forclf_kwargs
parameter infit
.inverse_noise_matrix (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forinverse_noise_matrix
parameter infit
.label_issues (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forlabel_issues
parameter infit
.labels (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forlabels
parameter infit
.noise_matrix (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing fornoise_matrix
parameter infit
.pred_probs (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forpred_probs
parameter infit
.sample_weight (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forsample_weight
parameter infit
.thresholds (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forthresholds
parameter infit
.validation_func (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forvalidation_func
parameter infit
.
- Returns:
self (
object
) – The updated object.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params (
dict
) – Estimator parameters.- Returns:
self (
estimator instance
) – Estimator instance.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') CleanLearning #
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight (
str
,True
,False
, orNone
, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing forsample_weight
parameter inscore
.- Returns:
self (
object
) – The updated object.