multiannotator_utils#
Helper methods used internally in cleanlab.multiannotator
Functions:
| 
 | Validate format of multi-annotator labels | 
| 
 | Validate format of pred_probs for multiannotator active learning functions | 
| 
 | Takes an array of labels and formats it such that labels are in the set  | 
| Check if any classes no longer appear in the set of consensus labels (established using the consensus_method stated) | |
| Compute soft cross entropy between the annotators' empirical label distribution and model pred_probs | |
| 
 | Find the best temperature scaling factor that minimizes the soft cross entropy between the annotators' empirical label distribution and model pred_probs | 
| 
 | Scales pred_probs by the given temperature factor. | 
- cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator(labels_multiannotator, pred_probs=None, ensemble=False, allow_single_label=False, annotator_ids=None)[source]#
- Validate format of multi-annotator labels - Return type:
- None
 
- cleanlab.internal.multiannotator_utils.assert_valid_pred_probs(pred_probs=None, pred_probs_unlabeled=None, ensemble=False)[source]#
- Validate format of pred_probs for multiannotator active learning functions 
- cleanlab.internal.multiannotator_utils.format_multiannotator_labels(labels)[source]#
- Takes an array of labels and formats it such that labels are in the set - 0, 1, ..., K-1, where- Kis the number of classes. The labels are assigned based on lexicographic order.- Return type:
- Tuple[- DataFrame,- dict]
- Returns:
- formatted_labels– Returns pd.DataFrame of shape- (N,M). The return labels will be properly formatted and can be passed to cleanlab.multiannotator functions.
- mapping– A dictionary showing the mapping of new to old labels, such that- mapping[k]returns the name of the k-th class.
 
 
- cleanlab.internal.multiannotator_utils.check_consensus_label_classes(labels_multiannotator, consensus_label, consensus_method)[source]#
- Check if any classes no longer appear in the set of consensus labels (established using the consensus_method stated) - Return type:
- None
 
- cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy(labels_multiannotator, pred_probs)[source]#
- Compute soft cross entropy between the annotators’ empirical label distribution and model pred_probs - Return type:
- float
 
- cleanlab.internal.multiannotator_utils.find_best_temp_scaler(labels_multiannotator, pred_probs, coarse_search_range=[0.1, 0.2, 0.5, 0.8, 1, 2, 3, 5, 8], fine_search_size=4)[source]#
- Find the best temperature scaling factor that minimizes the soft cross entropy between the annotators’ empirical label distribution and model pred_probs - Return type:
- float