label#
Classes:
| 
 | Manages label issues in a Datalab. | 
- class cleanlab.datalab.internal.issue_manager.label.LabelIssueManager(datalab, k=10, clean_learning_kwargs=None, health_summary_parameters=None, **_)[source]#
- Bases: - IssueManager- Manages label issues in a Datalab. - Parameters:
- datalab ( - Datalab) – A Datalab instance.
- k ( - int) – The number of nearest neighbors to consider when computing pred_probs from features. Only applicable if features are provided and pred_probs are not.
- clean_learning_kwargs ( - Optional[- Dict[- str,- Any]]) – Keyword arguments to pass to the- CleanLearningconstructor.
- health_summary_parameters ( - Optional[- Dict[- str,- Any]]) – Keyword arguments to pass to the- health_summaryfunction.
 
 - Attributes: - Short text that summarizes the type of issues handled by this IssueManager. - Returns a key that is used to store issue summary results about the assigned Lab. - A dictionary of verbosity levels and their corresponding dictionaries of report items to print. - Returns a key that is used to store issue score results about the assigned Lab. - Methods: - find_issues([pred_probs, features])- Find label issues in the datalab. - get_health_summary(pred_probs)- Returns a short summary of the health of this Lab. - collect_info(issues, summary_dict)- Collects data for the info attribute of the Datalab. - make_summary(score)- Construct a summary dataframe. - report(issues, summary, info[, ...])- Compose a report of the issues found by this IssueManager. - description: ClassVar[str]#
- Short text that summarizes the type of issues handled by this IssueManager. 
 - issue_name: ClassVar[str] = 'label'#
- Returns a key that is used to store issue summary results about the assigned Lab. 
 - verbosity_levels: ClassVar[Dict[int, List[str]]]#
- A dictionary of verbosity levels and their corresponding dictionaries of report items to print. - Example - >>> verbosity_levels = { ... 0: [], ... 1: ["some_info_key"], ... 2: ["additional_info_key"], ... } 
 - health_summary_parameters: Dict[str, Any]#
 - find_issues(pred_probs=None, features=None, **kwargs)[source]#
- Find label issues in the datalab. - Parameters:
- pred_probs ( - Optional[- ndarray[- Any,- dtype[- TypeVar(- _ScalarType_co, bound=- generic, covariant=True)]]]) – The predicted probabilities for each example.
- features ( - Optional[- ndarray[- Any,- dtype[- TypeVar(- _ScalarType_co, bound=- generic, covariant=True)]]]) – The features for each example.
 
- Return type:
- None
 
 - get_health_summary(pred_probs)[source]#
- Returns a short summary of the health of this Lab. - Return type:
- dict
 
 - collect_info(issues, summary_dict)[source]#
- Collects data for the info attribute of the Datalab. - Note - This method is called by - find_issues()after- find_issues()has set the- issuesand- summarydataframes as instance attributes.- Return type:
- dict
 
 - issue_score_key: ClassVar[str] = 'label_score'#
- Returns a key that is used to store issue score results about the assigned Lab. 
 - classmethod make_summary(score)#
- Construct a summary dataframe. - Parameters:
- score ( - float) – The overall score for this issue.
- Return type:
- DataFrame
- Returns:
- summary– A summary dataframe.
 
 - classmethod report(issues, summary, info, num_examples=5, verbosity=0, include_description=False, info_to_omit=None)#
- Compose a report of the issues found by this IssueManager. - Parameters:
- issues ( - DataFrame) –- An issues dataframe. - Example - >>> import pandas as pd >>> issues = pd.DataFrame( ... { ... "is_X_issue": [True, False, True], ... "X_score": [0.2, 0.9, 0.4], ... }, ... ) 
- summary ( - DataFrame) –- The summary dataframe. - Example - >>> summary = pd.DataFrame( ... { ... "issue_type": ["X"], ... "score": [0.5], ... }, ... ) 
- info ( - Dict[- str,- Any]) –- The info dict. - Example - >>> info = { ... "A": "val_A", ... "B": ["val_B1", "val_B2"], ... } 
- num_examples ( - int) – The number of examples to print.
- verbosity ( - int) – The verbosity level of the report.
- include_description ( - bool) – Whether to include a description of the issue in the report.
 
- Return type:
- str
- Returns:
- report_str– A string containing the report.
 
 - info: Dict[str, Any]#
 - issues: pd.DataFrame#
 - summary: pd.DataFrame#