multilabel_utils#
Helper functions used internally for multi-label classification tasks.
Functions:
| 
 | Extends predicted probabilities of a single class to two columns. | 
| 
 | Returns OneHot encoding of MultiLabel Data, and number of classes | 
| 
 | Convert multi-label classification  | 
| 
 | Convert multi-label classification  | 
- cleanlab.internal.multilabel_utils.stack_complement(pred_prob_slice)[source]#
- Extends predicted probabilities of a single class to two columns. - Parameters:
- pred_prob_slice ( - ndarray) – A 1D array with predicted probabilities for a single class.
 - Example - >>> pred_prob_slice = np.array([0.1, 0.9, 0.3, 0.8]) >>> stack_complement(pred_prob_slice) array([[0.9, 0.1], [0.1, 0.9], [0.7, 0.3], [0.2, 0.8]]) - Return type:
- ndarray
 
- cleanlab.internal.multilabel_utils.get_onehot_num_classes(labels, pred_probs=None)[source]#
- Returns OneHot encoding of MultiLabel Data, and number of classes - Return type:
- Tuple[- ndarray,- int]
 
- cleanlab.internal.multilabel_utils.int2onehot(labels, K)[source]#
- Convert multi-label classification - labelsfrom a- List[List[int]]format to a onehot matrix. This returns a binarized format of the labels as a multi-hot vector for each example, where the entries in this vector are 1 for each class that applies to this example and 0 otherwise.- Parameters:
- labels ( - listof- listsof- integers) – e.g. [[0,1], [3], [1,2,3], [1], [2]] All integers from 0,1,…,K-1 must be represented.
- K ( - int) – The number of classes.
 
- Return type:
- ndarray
 
- cleanlab.internal.multilabel_utils.onehot2int(onehot_matrix)[source]#
- Convert multi-label classification - labelsfrom a onehot matrix format to a- List[List[int]]format that can be used with other cleanlab functions.- Parameters:
- onehot_matrix ( - 2D np.ndarrayof- 0sand- 1s) – A matrix representation of multi-label classification labels in a binarized format as a multi-hot vector for each example. The entries in this vector are 1 for each class that applies to this example and 0 otherwise.
- Return type:
- List[- List[- int]]
- Returns:
- labels ( - listof- listsof- integers) – e.g. [[0,1], [3], [1,2,3], [1], [2]] All integers from 0,1,…,K-1 must be represented.