multilabel_utils#
Helper functions used internally for multi-label classification tasks.
Functions:
|
Extends predicted probabilities of a single class to two columns. |
|
Returns OneHot encoding of MultiLabel Data, and number of classes |
|
Convert multi-label classification |
|
Convert multi-label classification |
- cleanlab.internal.multilabel_utils.stack_complement(pred_prob_slice)[source]#
Extends predicted probabilities of a single class to two columns.
- Parameters:
pred_prob_slice (
ndarray
) – A 1D array with predicted probabilities for a single class.
Example
>>> pred_prob_slice = np.array([0.1, 0.9, 0.3, 0.8]) >>> stack_complement(pred_prob_slice) array([[0.9, 0.1], [0.1, 0.9], [0.7, 0.3], [0.2, 0.8]])
- Return type:
ndarray
- cleanlab.internal.multilabel_utils.get_onehot_num_classes(labels, pred_probs=None)[source]#
Returns OneHot encoding of MultiLabel Data, and number of classes
- Return type:
Tuple
[ndarray
,int
]
- cleanlab.internal.multilabel_utils.int2onehot(labels, K)[source]#
Convert multi-label classification
labels
from aList[List[int]]
format to a onehot matrix. This returns a binarized format of the labels as a multi-hot vector for each example, where the entries in this vector are 1 for each class that applies to this example and 0 otherwise.- Parameters:
labels (
list
oflists
ofintegers
) – e.g. [[0,1], [3], [1,2,3], [1], [2]] All integers from 0,1,…,K-1 must be represented.K (
int
) – The number of classes.
- Return type:
ndarray
- cleanlab.internal.multilabel_utils.onehot2int(onehot_matrix)[source]#
Convert multi-label classification
labels
from a onehot matrix format to aList[List[int]]
format that can be used with other cleanlab functions.- Parameters:
onehot_matrix (
2D np.ndarray
of0s
and1s
) – A matrix representation of multi-label classification labels in a binarized format as a multi-hot vector for each example. The entries in this vector are 1 for each class that applies to this example and 0 otherwise.- Return type:
List
[List
[int
]]- Returns:
labels (
list
oflists
ofintegers
) – e.g. [[0,1], [3], [1,2,3], [1], [2]] All integers from 0,1,…,K-1 must be represented.