Warning
This documentation is for an old version (v2.6.4
) of cleanlab
. To see the documentation for the latest stable version (v2.7.0
), click here.
Source code for cleanlab.datalab.internal.issue_manager_factory
# Copyright (C) 2017-2023 Cleanlab Inc.
# This file is part of cleanlab.
#
# cleanlab is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cleanlab is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with cleanlab. If not, see <https://www.gnu.org/licenses/>.
"""The factory module provides a factory class for constructing concrete issue managers
and a decorator for registering new issue managers.
This module provides the :py:meth:`register` decorator for users to register new subclasses of
:py:class:`IssueManager <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager>`
in the registry. Each IssueManager detects some particular type of issue in a dataset.
Note
----
The :class:`REGISTRY` variable is used by the factory class to keep track
of registered issue managers.
The factory class is used as an implementation detail by
:py:class:`Datalab <cleanlab.datalab.datalab.Datalab>`,
which provides a simplified API for constructing concrete issue managers.
:py:class:`Datalab <cleanlab.datalab.datalab.Datalab>` is intended to be used by users
and provides detailed documentation on how to use the API.
Warning
-------
Neither the :class:`REGISTRY` variable nor the factory class should be used directly by users.
"""
from __future__ import annotations
from typing import Dict, List, Type
from cleanlab.datalab.internal.issue_manager import (
ClassImbalanceIssueManager,
DataValuationIssueManager,
IssueManager,
LabelIssueManager,
NearDuplicateIssueManager,
NonIIDIssueManager,
ClassImbalanceIssueManager,
UnderperformingGroupIssueManager,
DataValuationIssueManager,
OutlierIssueManager,
NullIssueManager,
)
from cleanlab.datalab.internal.issue_manager.regression import RegressionLabelIssueManager
from cleanlab.datalab.internal.issue_manager.multilabel.label import MultilabelIssueManager
from cleanlab.datalab.internal.task import Task
REGISTRY: Dict[Task, Dict[str, Type[IssueManager]]] = {
Task.CLASSIFICATION: {
"outlier": OutlierIssueManager,
"label": LabelIssueManager,
"near_duplicate": NearDuplicateIssueManager,
"non_iid": NonIIDIssueManager,
"class_imbalance": ClassImbalanceIssueManager,
"underperforming_group": UnderperformingGroupIssueManager,
"data_valuation": DataValuationIssueManager,
"null": NullIssueManager,
},
Task.REGRESSION: {
"label": RegressionLabelIssueManager,
"outlier": OutlierIssueManager,
"near_duplicate": NearDuplicateIssueManager,
"non_iid": NonIIDIssueManager,
"data_valuation": DataValuationIssueManager,
"null": NullIssueManager,
},
Task.MULTILABEL: {
"label": MultilabelIssueManager,
"outlier": OutlierIssueManager,
"near_duplicate": NearDuplicateIssueManager,
"non_iid": NonIIDIssueManager,
"data_valuation": DataValuationIssueManager,
"null": NullIssueManager,
},
}
"""Registry of issue managers that can be constructed from a task and issue type
and used in the Datalab class.
:meta hide-value:
Currently, the following issue managers are registered by default for a given task:
- Classification:
- ``"outlier"``: :py:class:`OutlierIssueManager <cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager>`
- ``"label"``: :py:class:`LabelIssueManager <cleanlab.datalab.internal.issue_manager.label.LabelIssueManager>`
- ``"near_duplicate"``: :py:class:`NearDuplicateIssueManager <cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager>`
- ``"non_iid"``: :py:class:`NonIIDIssueManager <cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager>`
- ``"class_imbalance"``: :py:class:`ClassImbalanceIssueManager <cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager>`
- ``"underperforming_group"``: :py:class:`UnderperformingGroupIssueManager <cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager>`
- ``"data_valuation"``: :py:class:`DataValuationIssueManager <cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager>`
- ``"null"``: :py:class:`NullIssueManager <cleanlab.datalab.internal.issue_manager.null.NullIssueManager>`
- Regression:
- ``"label"``: :py:class:`RegressionLabelIssueManager <cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager>`
- ``"outlier"``: :py:class:`OutlierIssueManager <cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager>`
- ``"near_duplicate"``: :py:class:`NearDuplicateIssueManager <cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager>`
- ``"non_iid"``: :py:class:`NonIIDIssueManager <cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager>`
- ``"null"``: :py:class:`NullIssueManager <cleanlab.datalab.internal.issue_manager.null.NullIssueManager>`
- Multilabel:
- ``"label"``: :py:class:`MultilabelIssueManager <cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager>`
- ``"outlier"``: :py:class:`OutlierIssueManager <cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager>`
- ``"near_duplicate"``: :py:class:`NearDuplicateIssueManager <cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager>`
- ``"non_iid"``: :py:class:`NonIIDIssueManager <cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager>`
- ``"null"``: :py:class:`NullIssueManager <cleanlab.datalab.internal.issue_manager.null.NullIssueManager>`
Warning
-------
This variable should not be used directly by users.
"""
# Construct concrete issue manager with a from_str method
class _IssueManagerFactory:
"""Factory class for constructing concrete issue managers."""
@classmethod
def from_str(cls, issue_type: str, task: Task) -> Type[IssueManager]:
"""Constructs a concrete issue manager class from a string."""
if isinstance(issue_type, list):
raise ValueError(
"issue_type must be a string, not a list. Try using from_list instead."
)
if task not in REGISTRY:
raise ValueError(f"Invalid task type: {task}, must be in {list(REGISTRY.keys())}")
if issue_type not in REGISTRY[task]:
raise ValueError(f"Invalid issue type: {issue_type} for task {task}")
return REGISTRY[task][issue_type]
@classmethod
def from_list(cls, issue_types: List[str], task: Task) -> List[Type[IssueManager]]:
"""Constructs a list of concrete issue manager classes from a list of strings."""
return [cls.from_str(issue_type, task) for issue_type in issue_types]
[docs]def register(cls: Type[IssueManager], task: str = str(Task.CLASSIFICATION)) -> Type[IssueManager]:
"""Registers the issue manager factory.
Parameters
----------
cls :
A subclass of
:py:class:`IssueManager <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager>`.
task :
Specific machine learning task like classification or regression.
See :py:meth:`Task.from_str <cleanlab.datalab.internal.task.Task.from_str>`` for more details,
to see which task type corresponds to which string.
Returns
-------
cls :
The same class that was passed in.
Example
-------
When defining a new subclass of
:py:class:`IssueManager <cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager>`,
you can register it like so:
.. code-block:: python
from cleanlab import IssueManager
from cleanlab.datalab.internal.issue_manager_factory import register
@register
class MyIssueManager(IssueManager):
issue_name: str = "my_issue"
def find_issues(self, **kwargs):
# Some logic to find issues
pass
or in a function call:
.. code-block:: python
from cleanlab import IssueManager
from cleanlab.datalab.internal.issue_manager_factory import register
class MyIssueManager(IssueManager):
issue_name: str = "my_issue"
def find_issues(self, **kwargs):
# Some logic to find issues
pass
register(MyIssueManager, task="classification")
"""
if not issubclass(cls, IssueManager):
raise ValueError(f"Class {cls} must be a subclass of IssueManager")
name: str = str(cls.issue_name)
try:
_task = Task.from_str(task)
if _task not in REGISTRY:
raise ValueError(f"Invalid task type: {_task}, must be in {list(REGISTRY.keys())}")
except KeyError:
raise ValueError(f"Invalid task type: {task}, must be in {list(REGISTRY.keys())}")
if name in REGISTRY[_task]:
print(
f"Warning: Overwriting existing issue manager {name} with {cls} for task {_task}."
"This may cause unexpected behavior."
)
REGISTRY[_task][name] = cls
return cls
[docs]def list_possible_issue_types(task: Task) -> List[str]:
"""Returns a list of all registered issue types.
Any issue type that is not in this list cannot be used in the :py:meth:`find_issues` method.
See Also
--------
:py:class:`REGISTRY <cleanlab.datalab.internal.issue_manager_factory.REGISTRY>` : All available issue types and their corresponding issue managers can be found here.
"""
return list(REGISTRY.get(task, []))
[docs]def list_default_issue_types(task: Task) -> List[str]:
"""Returns a list of the issue types that are run by default
when :py:meth:`find_issues` is called without specifying `issue_types`.
task :
Specific machine learning task supported by Datalab.
See Also
--------
:py:class:`REGISTRY <cleanlab.datalab.internal.issue_manager_factory.REGISTRY>` : All available issue types and their corresponding issue managers can be found here.
"""
default_issue_types_dict = {
Task.CLASSIFICATION: [
"null",
"label",
"outlier",
"near_duplicate",
"non_iid",
"class_imbalance",
"underperforming_group",
],
Task.REGRESSION: [
"null",
"label",
"outlier",
"near_duplicate",
"non_iid",
],
Task.MULTILABEL: [
"null",
"label",
"outlier",
"near_duplicate",
"non_iid",
],
}
if task not in default_issue_types_dict:
task = Task.CLASSIFICATION
default_issue_types = default_issue_types_dict[task]
return default_issue_types