Source code for cleanlab.util

# Copyright (C) 2017-2022  Cleanlab Inc.
# This file is part of cleanlab.
# 
# cleanlab is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# cleanlab is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
# 
# You should have received a copy of the GNU Affero General Public License
# along with cleanlab.  If not, see <https://www.gnu.org/licenses/>.


# ## Confident Learning Utilties
# 
# #### Contains ancillarly helper functions used throughout this package.

from __future__ import (
    print_function, absolute_import, division, unicode_literals, with_statement
)
import numpy as np
from sklearn.utils import check_X_y


[docs]def assert_inputs_are_valid(X, s, psx=None): # pragma: no cover """Checks that X, s, and psx are correctly formatted""" if psx is not None: if not isinstance(psx, (np.ndarray, np.generic)): raise TypeError("psx should be a numpy array.") if len(psx) != len(s): raise ValueError("psx and s must have same length.") # Check for valid probabilities. if (psx < 0).any() or (psx > 1).any(): raise ValueError("Values in psx must be between 0 and 1.") if not isinstance(s, (np.ndarray, np.generic)): raise TypeError("s should be a numpy array.") # Check that s is zero-indexed (first label is 0). unique_classes = np.unique(s) if all(unique_classes != np.arange(len(unique_classes))): msg = "cleanlab requires zero-indexed labels (0,1,2,..,m-1), but in " msg += "your case: np.unique(s) = {}".format(str(unique_classes)) raise TypeError(msg) # Allow sparse matrices and check that they are valid format. check_X_y( X, s, accept_sparse=True, dtype=None, force_all_finite=False, ensure_2d=False, )
[docs]def remove_noise_from_class(noise_matrix, class_without_noise): """A helper function in the setting of PU learning. Sets all P(s=class_without_noise|y=any_other_class) = 0 in noise_matrix for pulearning setting, where we have generalized the positive class in PU learning to be any class of choosing, denoted by class_without_noise. Parameters ---------- noise_matrix : np.array of shape (K, K), K = number of classes A conditional probablity matrix of the form P(s=k_s|y=k_y) containing the fraction of examples in every class, labeled as every other class. Assumes columns of noise_matrix sum to 1. class_without_noise : int Integer value of the class that has no noise. Traditionally, this is 1 (positive) for PU learning.""" # Number of classes K = len(noise_matrix) cwn = class_without_noise x = np.copy(noise_matrix) # Set P( s = cwn | y != cwn) = 0 (no noise) x[cwn, [i for i in range(K) if i != cwn]] = 0.0 # Normalize columns by increasing diagnol terms # Ensures noise_matrix is a valid probability matrix for i in range(K): x[i][i] = 1 - float(np.sum(x[:, i]) - x[i][i]) return x
[docs]def clip_noise_rates(noise_matrix): """Clip all noise rates to proper range [0,1), but do not modify the diagonal terms because they are not noise rates. ASSUMES noise_matrix columns sum to 1. Parameters ---------- noise_matrix : np.array of shape (K, K), K = number of classes A conditional probablity matrix containing the fraction of examples in every class, labeled as every other class. Diagonal terms are not noise rates, but are consistency P(s=k|y=k) Assumes columns of noise_matrix sum to 1""" def clip_noise_rate_range(noise_rate): """Clip noise rate P(s=k'|y=k) or P(y=k|s=k') into proper range [0,1)""" return min(max(noise_rate, 0.0), 0.9999) # Vectorize clip_noise_rate_range for efficiency with np.arrays. vectorized_clip = np.vectorize(clip_noise_rate_range) # Preserve because diagonal entries are not noise rates. diagonal = np.diagonal(noise_matrix) # Clip all noise rates (efficiently). noise_matrix = vectorized_clip(noise_matrix) # Put unmodified diagonal back. np.fill_diagonal(noise_matrix, diagonal) # Re-normalized noise_matrix so that columns sum to one. noise_matrix = noise_matrix / noise_matrix.sum(axis=0) return noise_matrix
[docs]def clip_values(x, low=0.0, high=1.0, new_sum=None): """Clip all values in p to range [low,high]. Preserves sum of x. Parameters ---------- x : np.array An array / list of values to be clipped. low : float values in x greater than 'low' are clipped to this value high : float values in x greater than 'high' are clipped to this value new_sum : float normalizes x after clipping to sum to new_sum Returns ------- x : np.array A list of clipped values, summing to the same sum as x.""" def clip_range(a, low=low, high=high): """Clip a into range [low,high]""" return min(max(a, low), high) # Vectorize clip_range for efficiency with np.arrays. vectorized_clip = np.vectorize(clip_range) # Store previous sum prev_sum = sum(x) if new_sum is None else new_sum # Clip all values (efficiently). x = vectorized_clip(x) # Re-normalized values to sum to previous sum. x = x * prev_sum / float(sum(x)) return x
[docs]def value_counts(x): """Returns an np.array of shape (K, 1), with the value counts for every unique item in the labels list/array, where K is the number of unique entries in labels. Why this matters? Here is an example: x = [np.random.randint(0,100) for i in range(100000)] %timeit np.bincount(x) --Result: 100 loops, best of 3: 3.9 ms per loop %timeit np.unique(x, return_counts=True)[1] --Result: 100 loops, best of 3: 7.47 ms per loop Parameters ---------- x : list or np.array (one dimensional) A list of discrete objects, like lists or strings, for example, class labels 'y' when training a classifier. e.g. ["dog","dog","cat"] or [1,2,0,1,1,0,2]""" try: return x.value_counts() except: if type(x[0]) is int and (np.array(x) >= 0).all(): return np.bincount(x) else: return np.unique(x, return_counts=True)[1]
[docs]def round_preserving_sum(iterable): """Rounds an iterable of floats while retaining the original summed value. The name of each parameter is required. The type and description of each parameter is optional, but should be included if not obvious. The while loop in this code was adapted from: https://github.com/cgdeboer/iteround Parameters ----------- iterable : list<float> or np.array<float> An iterable of floats Returns ------- list<int> or np.array<int> The iterable rounded to int, preserving sum.""" floats = np.asarray(iterable, dtype=float) ints = floats.round() orig_sum = np.sum(floats).round() int_sum = np.sum(ints).round() # Adjust the integers so that they sum to orig_sum while abs(int_sum - orig_sum) > 1e-6: diff = np.round(orig_sum - int_sum) increment = -1 if int(diff < 0.) else 1 changes = min(int(abs(diff)), len(iterable)) # Orders indices by difference. Increments # of changes. indices = np.argsort(floats - ints)[::-increment][:changes] for i in indices: ints[i] = ints[i] + increment int_sum = np.sum(ints).round() return ints.astype(int)
[docs]def round_preserving_row_totals(confident_joint): """Rounds confident_joint cj to type int while preserving the totals of reach row. Assumes that cj is a 2D np.array of type float. Parameters ---------- confident_joint : 2D np.array<float> of shape (K, K) See compute_confident_joint docstring for details. Returns ------- confident_joint : 2D np.array<int> of shape (K,K) Rounded to int while preserving row totals.""" return np.apply_along_axis( func1d=round_preserving_sum, axis=1, arr=confident_joint, ).astype(int)
[docs]def int2onehot(labels): """Convert list of lists to a onehot matrix for multi-labels Parameters ---------- labels: list of lists of integers e.g. [[0,1], [3], [1,2,3], [1], [2]] All integers from 0,1,...,K-1 must be represented.""" from sklearn.preprocessing import MultiLabelBinarizer mlb = MultiLabelBinarizer() return mlb.fit_transform(labels)
[docs]def onehot2int(onehot_matrix): """Convert a onehot matrix for multi-labels to a list of lists of ints Parameters ---------- onehot_matrix: 2D np.array of 0s and 1s A one hot encoded matrix representation of multi-labels. Returns ------- labels: list of lists of integers e.g. [[0,1], [3], [1,2,3], [1], [2]] All integers from 0,1,...,K-1 must be represented.""" return [list(np.where(row == 1)[0]) for row in onehot_matrix]
[docs]def estimate_pu_f1(s, prob_s_eq_1): """Computes Claesen's estimate of f1 in the pulearning setting. Parameters ---------- s : iterable (list or np.array) Binary label (whether each element is labeled or not) in pu learning. prob_s_eq_1 : iterable (list or np.array) The probability, for each example, whether it is s==1 P(s==1|x) Output (float) ------ Claesen's estimate for f1 in the pulearning setting.""" pred = np.asarray(prob_s_eq_1) >= 0.5 true_positives = sum((np.asarray(s) == 1) & (np.asarray(pred) == 1)) all_positives = sum(s) recall = true_positives / float(all_positives) frac_positive = sum(pred) / float(len(s)) return recall ** 2 / (2.0 * frac_positive) if frac_positive != 0 else np.nan
[docs]def confusion_matrix(true, pred): """Implements a confusion matrix for true labels and predicted labels. true and pred MUST BE the same length and have the same distinct set of class labels represtented. Results are identical (and similar computation time) to: "sklearn.metrics.confusion_matrix" However, this function avoids the dependency on sklearn. Parameters ---------- y : np.array 1d Contains labels. Assumes s and y contains the same distinct set of labels. s : np.array 1d Contains labels. Assumes s and y contains the same distinct set of labels. Returns ------- confusion_matrix : np.array (2D) matrix of confusion counts with true on rows and pred on columns.""" assert (len(true) == len(pred)) true_classes = np.unique(true) pred_classes = np.unique(pred) K_true = len(true_classes) # Number of classes in true K_pred = len(pred_classes) # Number of classes in pred map_true = dict(zip(true_classes, range(K_true))) map_pred = dict(zip(pred_classes, range(K_pred))) result = np.zeros((K_true, K_pred)) for i in range(len(true)): result[map_true[true[i]]][map_pred[pred[i]]] += 1 return result
def _python_version_is_compatible( warning_str="pyTorch supports Python version 2.7, 3.5, 3.6, 3.7, 3.8", warning_already_issued=False, list_of_compatible_versions=[2.7, 3.5, 3.6, 3.7, 3.8], ): """Helper function for VersionWarning class that issues a warning (if a warning has not already been issued), whenever the python version is not in the list_of_compatible_versions. """ import sys v = sys.version_info[0] + 0.1 * sys.version_info[1] if v in list_of_compatible_versions: return True elif not warning_already_issued: import warnings warning = ''' {} cleanlab supports Python versions 2.7, 3.4, 3.5, 3.6. You are using Python version {}. You'll need to use a version compatible with both.'''.format(warning_str, v) warnings.warn(warning) warning_already_issued = True return False
[docs]class VersionWarning(object): """Functor that calls _python_version_is_compatible and manages the state of the bool variable warning_already_issued to make sure the same warning is never displayed multiple times. """ def __init__(self, warning_str, list_of_compatible_versions): self.warning_str = warning_str self.warning_already_issued = False self.list_of_compatible_versions = list_of_compatible_versions
[docs] def is_compatible(self): compatible = _python_version_is_compatible( self.warning_str, self.warning_already_issued, self.list_of_compatible_versions, ) if not compatible: self.warning_already_issued = True return compatible